Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.748
Filtrar
1.
Arch Toxicol ; 98(4): 1095-1110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369618

RESUMO

Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 µM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 µM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clorzoxazona , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Ratos Sprague-Dawley , Microssomos Hepáticos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Compostos de Epóxi/metabolismo , Glutationa/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139180

RESUMO

Soluble epoxide hydrolase (sEH) is an important enzyme for metabolic and cardiovascular health. sEH converts FFA epoxides (EpFAs), many of which are regulators of various cellular processes, to biologically less active diols. In human studies, diol (sEH product) to EpFA (sEH substrate) ratios in plasma or serum have been used as indices of sEH activity. We previously showed these ratios profoundly decreased in rats during acute feeding, possibly reflecting decreases in tissue sEH activities. The present study was designed to test which tissue(s) these measurements in the blood represent and if factors other than sEH activity, such as renal excretion or dietary intake of EpFAs and diols, significantly alter plasma EpFAs, diols, and/or their ratios. The results show that postprandial changes in EpFAs and diols and their ratios in plasma were very similar to those observed in the liver but not in other tissues, suggesting that the liver is largely responsible for these changes in plasma levels. EpFAs and diols were excreted into the urine, but their levels were not significantly altered by feeding, suggesting that renal excretion of EpFAs and diols may not play a major role in postprandial changes in circulating EpFAs, diols, or their ratios. Diet intake had significant impacts on circulating EpFA and diol levels but not on diol-to-EpFA (D-to-E) ratios, suggesting that these ratios, reflecting sEH activities, may not be significantly affected by the availability of sEH substrates (i.e., EpFAs). In conclusion, changes in FFA D-to-E ratios in plasma may reflect those in the liver, which may in turn represent sEH activities in the liver, and they may not be significantly affected by renal excretion or the dietary intake of EpFAs and diols.


Assuntos
Epóxido Hidrolases , Compostos de Epóxi , Humanos , Ratos , Animais , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Fígado/metabolismo
3.
Environ Pollut ; 337: 122508, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673322

RESUMO

The toxicity of acrylamide (AA) has continuously attracted wide concerns as its extensive presence from both environmental and dietary sources. However, its hepatic metabolic transformation and metabolic fate still remain unclear. This study aims to unravel the metabolic profile and glutathione (GSH) mediated metabolic fate of AA in liver of rats under the dose-dependent exposure. We found that exposure to AA dose-dependently alters the binding of AA and GSH and the generation of mercapturic acid adducts, while liver as a target tissue bears the metabolic transformation of AA via regulating GSH synthesis and consumption pathways, in which glutamine synthase (GSS), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase P1 (GSTP1) play a key role. In response to high- and low-dose exposures to AA, there were significant differences in liver of rats, including the changes in GSH and cysteine (CYS) activities and the conversion ratio of AA to glycidamide (GA), and liver can affect the transformation of AA by regulating the GSH-mediated metabolic pathway. Low-dose exposure to AA activates GSH synthesis pathway in liver and upregulates GSS activity and CYS content with no change in γ-glutamyl transpeptidase 1 (GGT1) activity. High-dose exposure to AA activates the detoxification pathway of GSH and increases GSH consumption by upregulating GSTP1 activity. In addition, molecular docking results showed that most of the metabolic molecules transformed by AA and GA other than themselves can closely bind to GSTP1, GSS, GGT1, N-acetyltransferase 8, and dimethyl sulfide dehydrogenase 1. The binding of AA-GSH and GA-GSH to GSTP1 and CYP2E1 enzymes determine the tendentiousness between toxicity and detoxification of AA, which exerts a prospective avenue for targeting protective role of hepatic enzymes against in vivo toxicity of AA.


Assuntos
Acrilamida , Citocromo P-450 CYP2E1 , Ratos , Animais , Acrilamida/toxicidade , Acrilamida/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , Acetilcisteína/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Metaboloma , Glutationa/metabolismo , Compostos de Epóxi/metabolismo
4.
Apoptosis ; 28(11-12): 1646-1665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702860

RESUMO

Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.


Assuntos
Diterpenos , Fenantrenos , Camundongos , Animais , Apoptose , Macrófagos/metabolismo , Diterpenos/efeitos adversos , Diterpenos/metabolismo , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Compostos de Epóxi/toxicidade , Compostos de Epóxi/metabolismo
5.
Mol Cell ; 83(14): 2578-2594.e9, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402368

RESUMO

The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.


Assuntos
Compostos de Epóxi , Spliceossomos , Humanos , Spliceossomos/metabolismo , Compostos de Epóxi/metabolismo , Macrolídeos/metabolismo , Splicing de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutagênese
6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445935

RESUMO

Oxylipins, oxidation products of unsaturated free fatty acids (FFAs), are involved in various cellular signaling systems. Among these oxylipins, FFA epoxides are associated with beneficial effects in metabolic and cardiovascular health. FFA epoxides are metabolized to diols, which are usually biologically less active, by soluble epoxide hydrolase (sEH). Plasma epoxide-diol ratios have been used as indirect measures of sEH activity. This study was designed to examine the effects of acute elevation of individual plasma FFAs on a variety of oxylipins, particularly epoxides, diols, and their ratios. We tested if FFA epoxide-diol ratios are altered by circulating FFA levels (i.e., substrate availability) independent of sEH activity. Wistar rats received a constant intravenous infusion of olive (70% oleic acid (OA)), safflower seed (72% linoleic acid (LA)), and fish oils (rich in ω-3 FFAs) as emulsions to selectively raise OA, LA, and ω-3 FFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), respectively. As expected, olive, safflower seed, and fish oil infusions selectively raised plasma OA (57%), LA (87%), EPA (70%), and DHA (54%), respectively (p < 0.05 for all). Raising plasma FFAs exerted substrate effects to increase hepatic and plasma epoxide and diol levels. These increases in epoxides and diols occurred to similar extents, resulting in no significant changes in epoxide-diol ratios. These data suggest that epoxide-diol ratios, often used as indices of sEH activity, are not affected by substrate availability or altered plasma FFA levels and that epoxide-diol ratios may be used to compare sEH activity between conditions of different circulating FFA levels.


Assuntos
Ácidos Graxos não Esterificados , Oxilipinas , Ratos , Animais , Ácidos Graxos não Esterificados/metabolismo , Oxilipinas/metabolismo , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Ratos Wistar , Ácidos Graxos Insaturados/metabolismo , Óleos de Peixe , Ácido Eicosapentaenoico , Ácido Linoleico , Ácidos Docosa-Hexaenoicos , Ácido Oleico
7.
Chem Biol Interact ; 382: 110591, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302460

RESUMO

Vitamin B12 (cyano- or hydroxo-cobalamin) acts, via its coenzymes, methyl- and adenosyl-cobalamin, as a partner for enzymatic reactions in humans catalysed by methionine synthase and methylmalonyl-CoA mutase. As well as its association with pernicious anaemia, human B12 deficiency may also be a risk factor for neurological illnesses, heart disease and cancer. In the present work the effect of vitamin B12 (hydroxocobalamin) on the formation of DNA adducts by the epoxide phenyloxirane (styrene oxide), a genotoxic metabolite of phenylethene (styrene), has been studied using an in vitro model system. Styrene was converted to its major metabolite styrene oxide as a mixture of enantiomers using a microsomal fraction from the livers of Sprague-Dawley rats with concomitant inhibition of epoxide hydrolase. However, microsomal oxidation of styrene in the presence of vitamin B12 gave diastereoisomeric 2-hydroxy-2-phenylcobalamins. The quantitative formation of styrene oxide-DNA adducts was investigated using 2-deoxyguanosine or calf thymus DNA in the presence or absence of vitamin B12. Microsomal incubations containing either deoxyguanosine or DNA in the absence of vitamin B12 gave 2-amino-7-(2-hydroxy-1-phenylethyl)-1,7-dihydro-6H-purin-6-one [N7-(2-hydroxy-1-phenylethyl)-guanine], and 2-amino-7-(2-hydroxy-2-phenylethyl)-1,7-dihydro-6H-purin-6-one [N7-(2-hydroxy-2-phenylethyl)guanine] as the principal adducts. With deoxyguanosine the level of formation of guanine adducts was ca. 150 adducts/106 unmodified nucleoside. With DNA the adduct level was 36 pmol/mg DNA (ca. 1 adduct/0.83 × 105 nucleotides). Styrene oxide adducts from deoxyguanosine or DNA were not detected in microsomal incubations of styrene in the presence of vitamin B12. These results suggest that vitamin B12 could protect DNA against genotoxicity due to styrene oxide and other xenobiotic metabolites. However, this potential defence mechanism requires that the 2-hydroxyalkylcobalamins derived from epoxides are not 'anti-vitamins' and ideally liberate, and therefore, recycle vitamin B12. Otherwise, depletion of vitamin B12 leading to human deficiency could increase the risk of carcinogenesis initiated by genotoxic epoxides.


Assuntos
Adutos de DNA , Vitamina B 12 , Animais , Ratos , Humanos , Xenobióticos , Ratos Sprague-Dawley , Compostos de Epóxi/toxicidade , Compostos de Epóxi/metabolismo , Dano ao DNA , DNA/metabolismo , Guanina , Desoxiguanosina , Estirenos , Estireno/toxicidade
8.
Environ Sci Pollut Res Int ; 30(30): 75262-75272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213021

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative joint disease, and acrylamide is a chemical produced when foods are processed at high temperatures. Recent epidemiological research linked acrylamide exposure from the diet and environment to a number of medical disorders. However, whether acrylamide exposure is associated with OA is still uncertain. This study was aimed at assessing the relationship between OA and hemoglobin adducts of acrylamide and its metabolite glycidamide (HbAA and HbGA). Data were taken from four cycles of the US NHANES database (2003-2004, 2005-2006, 2013-2014, 2015-2016). Individuals aged between 40 and 84 years who had complete information on arthritic status as well as HbAA and HbGA levels were eligible for inclusion. Univariate and multivariate logistic regression analysis s was performed to determine associations between study variables and OA. Restricted cubic splines (RCS) were used to examine non-linear associations between the acrylamide hemoglobin biomarkers and prevalent OA. A total of 5314 individuals were included and 954 (18%) had OA. After adjusting for relevant confounders, the highest quartiles (vs. lowest) of HbAA (adjusted odds ratio (aOR) = 0.87, 95% confidence interval (CI), 0.63-1.21), HbGA (aOR = 0.82, 95% CI, 0.60-1.12), HbAA + HbGA (aOR = 0.86, 95% CI, 0.63-1.19), and HbGA/HbAA (aOR = 0.88, 95% CI, 0.63--1.25) were not significantly associated with greater odds for OA. RCS analysis revealed that HbAA, HbGA, and HbAA + HbGA levels were non-linearly and inversely associated with OA (p for non-linearity < 0.001). However, the HbGA/HbAA ratio displayed a U-shaped relationship with prevalent OA. In conclusion, acrylamide hemoglobin biomarkers are non-linearly associated with prevalent OA in a general US population. These findings implicate ongoing public health concerns for widespread exposure to acrylamide. Further studies are still warranted to address the causality and biologic mechanisms underlying the association.


Assuntos
Acrilamida , Osteoartrite , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Inquéritos Nutricionais , Acrilamida/metabolismo , Hemoglobinas/metabolismo , Compostos de Epóxi/metabolismo , Biomarcadores , Osteoartrite/epidemiologia
9.
Adv Pharmacol ; 97: 327-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236763

RESUMO

The cytochrome P450 (CYP) soluble epoxide hydrolase (sEH) pathway generates a large number of biologically active epoxides and diols from a range of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs). While epoxides of arachidonic acid or epoxyeicosatrienoic acids are probably the best studied of these mediators, epoxides of linoleic acid as well as the fish oils; docosahexaenoic acid and eicosapentaenoic acid have also been attributed signaling actions. Cell and tissue levels of the PUFA epoxides are largely determined by the sEH and in many cases inflammation and chronic diseases, e.g., cardiovascular disease, diabetes and Alzheimer's disease, have been associated with increased sEH expression and the accelerated conversion of PUFA epoxides to their corresponding diols. In low concentrations, the diols act to influence stem and progenitor cells as well as brown adipose tissue but in high concentrations, they tend to have pro-inflammatory and cytotoxic effects that promote disease progression. This review outlines some of the actions to the PUFA epoxides and diols in physiology and pathophysiology as well as the beneficial effects associates with sEH inhibition.


Assuntos
Epóxido Hidrolases , Ácidos Graxos Ômega-3 , Humanos , Epóxido Hidrolases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Transdução de Sinais , Compostos de Epóxi/metabolismo
10.
Nat Commun ; 14(1): 875, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797237

RESUMO

Triptolide is a valuable multipotent antitumor diterpenoid in Tripterygium wilfordii, and its C-14 hydroxyl group is often selected for modification to enhance both the bioavailability and antitumor efficacy. However, the mechanism for 14-hydroxylation formation remains unknown. Here, we discover 133 kb of tandem duplicated CYP82Ds encoding 11 genes on chromosome 12 and characterize CYP82D274 and CYP82D263 as 14-hydroxylases that catalyze the metabolic grid in triptolide biosynthesis. The two CYP82Ds catalyze the aromatization of miltiradiene, which has been repeatedly reported to be a spontaneous process. In vivo assays and evaluations of the kinetic parameters of CYP82Ds indicate the most significant affinity to dehydroabietic acid among multiple intermediates. The precursor 14-hydroxy-dehydroabietic acid is successfully produced by engineered Saccharomyces cerevisiae. Our study provides genetic elements for further elucidation of the downstream biosynthetic pathways and heterologous production of triptolide and of the currently intractable biosynthesis of other 14-hydroxyl labdane-type secondary metabolites.


Assuntos
Diterpenos , Fenantrenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hidroxilação , Diterpenos/metabolismo , Fenantrenos/metabolismo , Compostos de Epóxi/metabolismo
11.
Bioorg Chem ; 131: 106285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450198

RESUMO

The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.


Assuntos
Peróxidos Lipídicos , Oryza , Compostos de Epóxi/metabolismo , Lipoxigenase , Oryza/metabolismo , Oxigênio
12.
Cancer Epidemiol Biomarkers Prev ; 32(3): 415-421, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36535654

RESUMO

BACKGROUND: Acrylamide (AA) is classified as "probably carcinogenic to humans (class 2A)" by the International Agency for Research on Cancer. AA causes cancer owing to its mutagenic and genotoxic metabolite, glycidamide (GA), and its effects on sex hormones. Both AA and GA can interact with hemoglobin to hemoglobin adducts (HbAA and HbGA, respectively), which are considered appropriate biomarkers of internal exposure of AA. However, few epidemiologic studies reported an association of HbAA and HbGA with breast cancer. METHODS: We conducted a nested case-control study within the Japan Public Health Center-based Prospective Study cohort (125 cases and 250 controls). Cases and controls were categorized into tertiles (lowest, middle, and highest) using the distribution of HbAA or HbGA levels in the control group and estimated ORs and 95% confidence intervals (CI) using conditional logistic regression, adjusting for potential confounders. RESULTS: No association was observed between HbAA (ORHighestvs.Lowest, 1.34; 95% CI, 0.69-2.59), HbGA (ORHighest vs. Lowest, 1.46; 95% CI, 0.79-2.69), their sum HbAA+HbGA (ORHighest vs. Lowest, 1.36; 95% CI, 0.72-2.58) and breast cancer; however, some evidence of positive association was observed between their ratio, HbGA/HbAA, and breast cancer (ORHighest vs. Lowest, 2.19; 95% CI, 1.11-4.31). CONCLUSIONS: There was no association between biomarkers of AA and breast cancer. IMPACT: It is unlikely that AA increases breast cancer risk; however, the association of AA with breast cancer may need to be evaluated, with a focus not only on the absolute amount of HbAA or HbGA but also on HbGA/HbAA and the activity of metabolic genes.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Estudos de Casos e Controles , Acrilamida , Estudos Prospectivos , População do Leste Asiático , Compostos de Epóxi/metabolismo , Hemoglobinas/análise , Biomarcadores , Modelos Logísticos
13.
Water Res ; 223: 118986, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988339

RESUMO

Irrigation with reclaimed wastewater is a growing practice aimed at conserving freshwater sources, especially in arid and semiarid regions. Despite the apparent advantages to water management, the practice of irrigation with reclaimed wastewater exposes the agroenvironment to contaminants of emerging concern (CECs). In this report, we estimated the unintentional dietary exposure of the Israeli population (2808 participants) to CECs from consumption of produce irrigated with reclaimed wastewater using detailed dietary data obtained from a National Health and Nutrition Survey (Rav Mabat adults; 2014-2016). Human health risk analyses were conducted based on acceptable daily intake (ADI) and threshold of toxicological concern (TTC) approaches. The highest unintentional exposure to wastewater-borne CECs was found to occur through the consumption of leafy vegetables. All analyzed CECs exhibited hazard quotients <1 for the mean- and high-exposure scenarios, indicating no human health concerns. However, for the extreme exposure scenario, the anticonvulsant agents lamotrigine and carbamazepine, and the carbamazepine metabolite epoxide-carbamazepine exhibited the highest exposure levels of 29,100, 27,200, and 19,500 ng/person (70 kg) per day, respectively. These exposure levels exceeded the TTC of lamotrigine and the metabolite epoxide-carbamazepine, and the ADI of carbamazepine, resulting in hazard quotients of 2.8, 1.1, and 1.9, respectively. According to the extreme estimated scenario, consumption of produce irrigated with reclaimed wastewater (leafy vegetables in particular) may pose a threat to human health. Minimizing irrigation of leafy vegetables using reclaimed wastewater and/or improving the quality of the reclaimed wastewater using an advanced treatment would significantly reduce human dietary exposure to CECs.


Assuntos
Irrigação Agrícola , Águas Residuárias , Adulto , Irrigação Agrícola/métodos , Anticonvulsivantes/metabolismo , Carbamazepina/metabolismo , Exposição Dietética , Compostos de Epóxi/metabolismo , Humanos , Lamotrigina/metabolismo , Verduras/metabolismo
14.
Biotechnol Lett ; 44(8): 985-990, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35731351

RESUMO

We describe a system that allows for biocatalyzed in vivo synthesis of α-hydroxy ketones from racemic epoxide starting material by in vivo co-expression of native and engineered epoxide hydrolase and alcohol dehydrogenases. The constructed expression system exploits the host cell metabolism for supply and regeneration of precious nicotinamide dinucleotide coenzyme. Racemic styrene oxide added to growth medium passively enters the cells and is hydrolyzed into (1R)-phenylethane-1,2-diol, which is subsequently oxidized to the acyloin 2-hydroxyacetophenone. Produced 2-hydroxyacetophenone escapes the cells via passive diffusion into the growth medium. Thus, co-expression of potato epoxide hydrolase and engineered alcohol dehydrogenase variants can be employed for robust and facile production of 2-hydroxyacetophenone from racemic styrene oxide.


Assuntos
Epóxido Hidrolases , Compostos de Epóxi , Álcool Desidrogenase , Catálise , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Estereoisomerismo
15.
Biomed Khim ; 68(3): 177-189, 2022 Jun.
Artigo em Russo | MEDLINE | ID: mdl-35717582

RESUMO

Cyclooxygenase and lipoxygenase derived lipid metabolites of polyunsaturated fatty acids (PUFAs), as well as their role in the inflammation, have been studied quite thoroughly. However, cytochrome P450 derived lipid mediators, as well as their participation in the regulation of the inflammation, need deeper understanding. In recent years, it has become known that PUFAs are oxidized by cytochrome P450 epoxygenases to epoxy fatty acids, which act as the extremely powerful lipid mediators involved in resolving inflammation. Recent studies have shown that the anti-inflammatory mechanisms of ω-3 PUFAs are also mediated by their conversion to the endocannabinoid epoxides. Thus, it is clear that a number of therapeutically relevant functions of PUFAs are due to their conversion to PUFA epoxides. However, with the participation of cytochrome P450 epoxygenases, not only PUFA epoxides, but also other metabolites are formed. They are further are converted by epoxide hydrolases into pro-inflammatory dihydroxy fatty acids and anti-inflammatory dihydroxyeicosatrienoic acids. The study of the role of PUFA epoxides in the regulation of the inflammation and pharmacological modeling of the activity of epoxide hydrolases are the promising strategies for the treatment of the inflammatory diseases. This review systematizes the current literature data of the fatty acid epoxides, in particular, the endocannabinoid epoxides. Their role in the regulation of inflammation is discussed.


Assuntos
Compostos de Epóxi , Ácidos Graxos Ômega-3 , Anti-Inflamatórios , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/metabolismo , Endocanabinoides/metabolismo , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Ácidos Graxos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Humanos , Inflamação/tratamento farmacológico
16.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163177

RESUMO

Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.


Assuntos
Diterpenos/farmacologia , Pancreatite/tratamento farmacológico , Fenantrenos/farmacologia , Doença Aguda , Animais , Antioxidantes/farmacologia , Ceruletídeo/efeitos adversos , Ceruletídeo/farmacologia , China , Modelos Animais de Doenças , Diterpenos/metabolismo , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/metabolismo , Pancreatite/imunologia , Pancreatite/fisiopatologia , Fenantrenos/metabolismo , Espécies Reativas de Oxigênio
17.
Chem Res Toxicol ; 35(2): 283-292, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044764

RESUMO

Despite the increasing popularity of e-cigarettes, their long-term health effects remain unknown. In animal models, exposure to e-cigarette has been reported to result in pulmonary and cardiovascular injury, and in humans, the acute use of e-cigarettes increases heart rate and blood pressure and induces endothelial dysfunction. In both animal models and humans, cardiovascular dysfunction associated with e-cigarettes has been linked to reactive aldehydes such as formaldehyde and acrolein generated in e-cigarette aerosols. These aldehydes are known products of heating and degradation of vegetable glycerin (VG) present in e-liquids. Here, we report that in mice, acute exposure to a mixture of propylene glycol:vegetable glycerin (PG:VG) or to e-cigarette-derived aerosols significantly increased the urinary excretion of acrolein and glycidol metabolites─3-hydroxypropylmercapturic acid (3HPMA) and 2,3-dihydroxypropylmercapturic acid (23HPMA)─as measured by UPLC-MS/MS. In humans, the use of e-cigarettes led to an increase in the urinary levels of 23HPMA but not 3HPMA. Acute exposure of mice to aerosols derived from PG:13C3-VG significantly increased the 13C3 enrichment of both urinary metabolites 13C3-3HPMA and 13C3-23HPMA. Our stable isotope tracing experiments provide further evidence that thermal decomposition of vegetable glycerin in the e-cigarette solvent leads to generation of acrolein and glycidol. This suggests that the adverse health effects of e-cigarettes may be attributable in part to these reactive compounds formed through the process of aerosolizing nicotine. Our findings also support the notion that 23HPMA, but not 3HPMA, may be a relatively specific biomarker of e-cigarette use.


Assuntos
Acroleína/química , Sistemas Eletrônicos de Liberação de Nicotina , Compostos de Epóxi/química , Aromatizantes/química , Propanóis/química , Acroleína/metabolismo , Acroleína/urina , Aerossóis/química , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Compostos de Epóxi/metabolismo , Compostos de Epóxi/urina , Aromatizantes/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Propanóis/metabolismo , Propanóis/urina , Solventes , Vaping
18.
Pharmacol Ther ; 234: 108049, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34848204

RESUMO

Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.


Assuntos
COVID-19 , Compostos de Epóxi , Ácido Araquidônico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides , Compostos de Epóxi/metabolismo , Compostos de Epóxi/farmacologia , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Humanos , Neovascularização Patológica
19.
Biochem Pharmacol ; 195: 114866, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863976

RESUMO

Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.


Assuntos
Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Ácidos Graxos/metabolismo , Cardiopatias/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Epóxi/química , Cardiopatias/tratamento farmacológico , Cardiopatias/enzimologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/metabolismo , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Solubilidade , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/metabolismo
20.
Anal Biochem ; 644: 113994, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080216

RESUMO

cis-9,10-Epoxy-octadecanoic acid (oleic acid epoxide, OAE) and 5α,6α-epoxy-cholesterol (ChE) are endogenous epoxides. Unlike other epoxides, the oxirane groups of OAE and ChE are relatively stable against nucleophiles. OAE lacks toxicity and mutagenicity, while ChE is considered harmful, mutagenic and cancerogenic to animals. In humans, ChE is associated with cancer. The metabolism of OAE and ChE includes hydrolysis by cytosolic and microsomal hydrolases to their diols and glutathione (GSH) conjugation by GSH S-transferases (GST) to form the GSH conjugates (R-SG; R, residue). The GST-catalyzed GSH conjugation of OAE and ChE is poorly investigated. This article reports on the GSH conjugation of OAE, its methyl ester (OAEMe) and of ChE by rat liver homogenate GST. The GSH conjugates of OAE, OAEMe and ChE, i.e., OAE-SG, OAEMe-SG and ChE-SG, respectively, were determined by pre-column derivatization with o-phthaldialdehyde (OPA)/2-mercaptoethanol, high-performance liquid chromatography (HPLC) and fluorescence detection. Complex biphasic kinetics were observed with substrate inhibition of GST activity by OAE, OAEMe and ChE, an optimum pH of about 8.3 for OAE, and no measurable chemical GSH conjugation, underlying the importance of GST for the biotransformation of these epoxides. The results confirm the substrate concentration-dependent kinetic mechanism of GST isoforms first reported by William B. Jakoby (J. Biol. Chem. 1974) for exogenous electrophiles including the epoxide 1,2-epoxy-3-(p-nitrophenoxy)propane and the organic nitrates. This mechanism allows for maximal GST activity that can be achieved under given concentrations of GSH, epoxides and other electrophiles.


Assuntos
Compostos de Epóxi , Glutationa Transferase , Animais , Catálise , Colesterol/metabolismo , Compostos de Epóxi/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Ácido Oleico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...